Panasonic and imec Partner on Solid-State Battery Development

November 15, 2017 by Paul Shepard

Imec and Panasonic jointly-announced the development an innovative solid nanocomposite electrolyte for next-generation batteries with a lithium-ion conductivity several times greater than its liquid equivalent. The ion conductivity already reaches several mS/cm at room temperature.

Imec and Panasonic have set a goal to develop novel solid nanocomposite electrolyte materials towards 100mS/cm in the next few years, which would make them suitable for fast-charging high-energy cells for use in vehicles and electronics.

Li-ion batteries are the predominant type of storage in the portable electronics and electrical vehicle markets. They are also poised to take an important role in the future energy grid, where they have the capacity to store energy from sustainable energy sources.

However, Li-ion batteries still require considerable innovation in order to achieve ultra-fast-charging high-energy cells. To accelerate this evolution, imec has set up a partner program concentrating on solid-state batteries.

“One of the unique benefits of imec is that we can leverage our state-of-the-art semiconductor knowledge to solve challenges in other research domains such as smart energy,” stated Philippe Vereecken, principal member of technical staff and program manager at imec.

“This is what we have done to develop a novel solid nanocomposite electrolyte (SCE) which is deposited from solution. The wet chemical preparation route allows the solid-state electrolyte to be casted into powder electrodes, where it solidifies while remaining mechanically pliable. This paves the way to batteries in flexible form factors.

“Imec’s and Panasonic’s SCE is a mesoporous silica monolith functionalized with specific surface chemistry and ionic salts. It has achieved Li-ion conductivities of 3 to 10 mS/cm at room temperature which is exceptionally high for solid electrolytes that are applied via wet chemical coating.

Moreover, using our new electrolyte technology, we have demonstrated rechargeable solid-state Li-ion batteries with lithium titanate (Li4Ti5O12) as negative electrode and lithium iron phosphate (LiFePO4) as positive electrode,” explained Vereecken.

These results will also be presented at this week’s 58th Battery Conference in Fukuoka (Japan) (November 14-16), in the international session [3H16] on Thu. Nov 16, 2017 2:00 pm - 2:20 pm. “Mechanism analysis of Li-ion conductivity enhancement in porous silica-based solid nanocomposite electrolytes and session Li-ion battery” as well as in the Li-ion battery session [2E07] on Wed. Nov 15, 2017 11:00 am - 11:20 am