News

New Devices and Architectures needed for Energy-Efficient Computing

October 26, 2015 by Jeff Shepard

A report that resulted from a workshop jointly funded by the Semiconductor Research Corporation (SRC) and National Science Foundation (NSF) outlines key factors limiting progress in computing--particularly related to energy consumption--and novel research that could overcome these barriers. The findings and recommendations in the report are in alignment with the nanotechnology-inspired Grand Challenge for Future Computing announced today by the White House Office of Science and Technology Policy. The Grand Challenge calls for new approaches to produce computing systems capable of operating with the efficiency of the human brain.

Energy efficiency is vital to improving performance at all levels. These levels range from devices and transistors to large information technology systems, and from small sensors at the edge of the Internet of Things to large data centers in cloud and supercomputing systems.

"Fundamental research on hardware performance, complex system architectures, and new memory/storage technologies can help to discover new ways to achieve energy-efficient computing," said Jim Kurose, assistant director of NSF's Directorate for Computer and Information Science and Engineering (CISE). "Partnerships with industry, including SRC and its member companies, are an important way to speed the adoption of these research findings."

Performance improvements today are limited by energy inefficiencies that result in computing systems overheating and experiencing thermal management issues. The electronic circuits in computer chips still operate far from any fundamental limits to energy efficiency, and much of the energy used by today's computers is expended moving data between memory and their central processors.

But while the pace of performance increases has slowed, the amount of data computer users produce is exploding. By 2020, an estimated 44 zettabytes of data (1 zettabyte equals 1 trillion gigabytes) will be created on an annual basis, according to a 2014 IDC study.

"New devices, and new architectures based on those devices, could take computing far beyond the limits of today's technology. The benefits to society would be enormous," said Tom Theis, Nanoelectronics Research Initiative (NRI) executive director at SRC, the world's leading university-research consortium for semiconductor technologies.